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Abstract This paper studies the relationship between NMR measurements of the magnetization 
decay in porous media and random-walk problems. The behaviour of this decay can be related 
to the statistical properlies of random walks which interact with the pore-solid interface via 
perfectly reflecting boundary conditions. An efficient numerical technique measures Ihese 
statistics using a variable step size random-walk simulation. This technique is applied to lhree 
simple models for porous materials. The results indicate that there is a regime of setched- 
expnential relaxation of the magnetization for a permlation model 

1. Introduction 

Nuclear magnetic resonance (NMR) techniques have shown promise as a tool for 
understanding the structure of materials. In their classic work, Brownstein and Tan used 
NMR relaxation measurements to determine the size of biological cells [I]. They also looked 
at three simple geometries for pore spaces and calculated the corresponding relaxation 
curves. Since then there has been much interest in determining the type of  structural 
information &at can be discerned from NMR experiments [2-6]. 

Different types of NMR measurements can be performed on a sample of porous material, 
and ,each technique yields different information about the pore structure [2,6,3]. The 
numerical methods that I discuss are most directly applicable to the following NMR 
experiment. A sample of a porous material is saturated or partially saturated with a fluid 
which contains an NMR active nucleus. Let the pore volume be written as V ,  with the pore 
surface S referring to the boundary between the pore space and  the^ solid material of the 
sample. The sample is placed in a high magnetic field and acquires~ a net magnetization 
in the direction of this extemal field. The sample is then exposed to a short RF pulse at 
the Larmor frequency of the active nucleus. This pulse rotates the sample's magnetization 
away from the dirrction of the external field [4]. After the initial pulse, the magnetization 
will, through natural processes, relax back to its original orientation. 

There are, of course, many subtle experimental issues associated with actually making 
these measwements [IO, 131; however, the basic physics of the system is straightforward. 
 the^ time evolution of any component of  the local magnetization density, m(x ,  t ) .  in the 
pore volume is described by [31] 

-- am(x, t ,  - &m(x, t )  ' m(x,  0) = M O  
a t  
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where D is a diffusion constant, MO is the magnetization at time t = 0 and p is the surface 
relaxation parameter (which may be diierent for different components of the magnetization) 
[lo]. Experimentally, it is the quantity m(t) that is actually measured. These equations 
ignore the effect of the decay which occurs in the bulk liquid; it has been shown that this 
bulk relaxation gives only a trivial exponential prefactor to m(t) 191. 

It is straightforward to create a random-walk algorithm whose behaviour is described by 
equations equivalent to (1.1). Consider No random walkers placed within the pore volume of 
the sample at t = 0. Whenever any of these walker encounters the interface, it is destroyed 
with a probability q and reflected back into the pore volume with a probability 1-4. Given 
these rules, the density of these random walkers, u(x. t). satisfies the following equations: 

U ( X ,  0) = No/V 
”” 

where D‘ is a diffusion constant (which depends on the microscopic size, a, of a single 
step, the time, 5 ,  for such a step, and d, the dimensionality of space) [211, and q’ is 
a constant determined by the microscopic details of the random-walk algorithm [11,14]. 
There is currently some debate over the proper functional form for q’ in lattice simulations. 
Fortunately, the analysis and formalism that I present below do not depend crucially on 
these details. When making comparisons with experimental observations, I will assume that 
q’ zz qa/s, which is the accepted form for small q. The quantity U@), which corresponds 
to the measurable quantity m(t)  in the magnetization experiment, can be interpreted as the 
probability that a typical walker will survive to a time f .  

The correspondence between m(t)  and ~ ( t )  suggests a computational method for 
calculating the decay curve that would be measured for a specific model of a porous material. 
With the geometry of the pore space encoded into computer memory (e.g. as a set of points 
in space, or a set of intersection planes), it is possible to implement this partially reflecting 
random-walk scheme to calculate the function ~ ( t )  [ll, 141. The NMR magnetization curve 
for such a model pore space is ther. simply given by 

(1.3) 

Unfortunately, this random-walk method suffers from two fundamental problems. The 
first is that as time passes, the number of times that a typical walker has encountered the 
surface increases. Since each of these contacts represents a possible termination of the walk, 
it requires a large number of walks to get good statistics at long times. 

The second difficulty is that the passage of time is measured in units of 5 ,  the amount 
of ‘time’ required to take one step of length U. Thus, to measure the elapsed time for a 
specific walk, the trajectory must be made up of steps with this fixed size. This method 
becomes inefficient when the trajectory of the random walk takes it into the centre of a 
large void. It takes a very large number of steps for the walk to make significant progress 
toward the surface. 

It is possible to overcome these problems with the numerical methods presented below 
and there are two facts that motivate this investigation and distinguish it from earlier 
numerical studies. The first is that the properties of random walks that are either destroyed 
or reflected at a surface are intimately related to the properties of walks that are always 
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reflected from that surface. Thus, the partially reflecting random-walk algorithm can be 
replaced by one that utilizes random walks that live forever. 

The second important fact is that it is possible to have a variable step size random walk 
and still retain time information. Consider a random walker taking a single step of length r .  
To know the elapsed time for this one step, it is nezzssary to determine the number of steps 
that it would have required to make this excursion with steps of length a. This calculation 
has been done for the case of a continuous random walk [ZO]. By making use of this result 
it is possible to determine probabilistically how many small steps would have been required 
to make the progress that was made by a single large step. 

The rest of this paper is organized in the following manner. In section 2. I present the 
formalism that relates the quantity u(t )  to the properties of random walks that are always 
reflected from the pore surface. Section 3 contains a brief discussion of the numerical 
method used and then presents results for three simple models for porous media. Section 
4 contains some discussion of the applicability of this numerical method to real systems, 
and an extension of these ideas to a different NMR problem. In appendix A, I describe the 
relevant details of my implementation of the random-walk scheme discussed in section 3. 

2. .Formalism 

Consider a specific~walker labelled by i, moving about the p& volume with the partially 
reflecting random-walk algorithm described above. Imagine that a record is kept of the 
total number of steps that this walker has taken since its creation. For each contact with 
the boundary surface, I define Pi( t )  as the probability that at time f the ith walker had its 
nth contact with the boundary. (For a random walk with a fixed step size, the distribution 

is a 8-function in time. I show below that for variable step size walks, Pi@) is a 
general distribution.) The character of PL (t) will depend on the environment of the walk. 
A walk which remains in a relatively confined region can quickly accumulate n contacts 
with the boundary, while a walk which explores a large void requires a large amount of 
time to accrue n bounces. 

dt’Pi(t’) is the probability that this walker has bounced n times within 
a time t .  Let the contact at which the ith walk is terminated be denoted as ni. For n < ni,  
JF dt‘Pi(t‘) = 1, while this integral is zem for n ni. I define u’(t) as the probability 
that the ith walker is still alive at time t .  This can be written as 

The integral 

(2.1) 

where I have labelled the first contact with the surface as n = 0. I now write the total 
number of walks that survive to time t as 

The labelling by i is arbitmy, and thus I choose to sort the data according to the 
condition nt 6 n2 6 .. . c nNo. Define kj as the number of walks that died after exactly j 
contacts with the cluster. Then I may write 
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where the first term comes from the walks that were terminated on the first contact, the 
second term comes from walks that were terminated on the second contact, and so on. 

Consider the j th  term in this series. It is made up of kj walks that terminated on the 
j th  contact with the surface. Thus, up until this final contact, these walkers behaved just 
as if they were walkers that were never going to be destroyed. Therefore, I consider a 
modified random-walk algorithm in which a large number of random walkers are released 
in the same pore volume and whenever a walker crosses the surface S, it is always reflected. 
I define P,(t) as the probability that one of these walks had its nth bounce at time f. Thus 
the normalization condition is I,”dtP,(t) = 1. 

The behaviour of these walks as they strike the surface for the jth time should be the 
same as the behaviour of the kj walks that are destroyed at this contact. Thus, I write 

XO+k,+-+k, f r 1 dt’Pj(f‘)  = kj dr’(r‘)P,(t’). 
r=l+ko+t,+ ...+ k,-, 

(2.4) 

I now use the fact that on average kj = Noq(1 - q)’, along with (2.3) and (2.4) to write 

The quantity in brackets in (2.5) is dependent only on quantities averaged over aIl random 
walks which are reflected after every contact with the surface S. Using relation (1.3), I find 
that the magnetization is 

Also useful is the time derivative of m(r), 

m -- 
?l=O dt 

Equations (2.6) and (2.7) represent the main results of this section. 
It is worth discussing the issue of averaging in somewhat more detail. In studying a 

problem involving random walks which are destroyed, it may seem counter-intuitive to use 
statistics derived from a set of walks that are always reflected f” S. If some of these 
walks which never terminate, had been forced to terminate, then clearly some of some 
of these walks would not contribute to the behaviour at large n. But which ones would 
contribute? The answer is that because the walks which survive are chosen at random, each 
walk could potentially have contributed. Thus, the statistics of the surviving walks should 
be independent of the number of walks which survive. In order to get the best statistics, I 
allow all of the walks to survive. 

I have recast the problem of calculating u(t) into determining the set of functions P,,(t). 
These functions are, of course, interesting in their own right. They are quantities describing 
the behaviour of a random walk moving in a confined geometry. The true promise of this 
method, however, is that it may be possible to understand the function P,(t) in terms of 
the structural features of the pore geometry or vice versa. If a form for these functions 
can be derived theoretically, or measured computationally, (2.6) gives the experimentally 
measurable relaxation curve for such a pore geometry. 
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3. Numerical results 

This section begins with a brief discussion of the computational scheme used to calculate 
the functions Pa@).  Only the most important ideas are presented here, with more details 
being provided in the appendix. 

P, ( f )  is defined as the probability that a walker which is started with equal probability 
anywhere in the pore volume will have its nth encounter with the pore surface at time t .  
This probability is averaged over all possible trajectories available to the walker. 

A standard trick which increases the efficiency of a random-walk algorithm is to use a 
variable step size random walk [22]. By this scheme, when a walker is far from an interface, 
it takes larger steps, taking short steps  of^ the minimal size, a, only when it is near to a 
surface. However, in taking these large steps, I need to know how many short steps would 
have been required to cover the distance of the larger step. Because I am interested in 
averaging over all~random-walk trajectories, it is the distribution of possible elapsed times 
that is of interest. Thus, the variable step size walk actually provides more information with 
fewer walkers than the standard fixed step size algorithm. 

In the continuum limit (i.e. a + 0, r + 0, D' = a2/rd = constant), there is a discrete 
solution for the problem of the elapsed time distribution for variable step sizes [20]; For 
spatial dimension d = 2, the probability, pr ( t ) ,  that a random walk will travel a linear 
distance r in time t is 

where J,,(x) is the Bessel function'of order n, and <O,X is the kth zero of J&). (It is 
possible to calculate p,(r)  ford > 2, but in this work, for simplicity, I consider only two- 
dimensional systems.) Unfortunately, (3.1) is valid only for a continuous random walk. For 
large r ,  however, this expression provides a good approximation to the discrete probability 
distribution. 

Equation (3.1) gives the probability distribution for the elapsed time of a single step 
of length r .  In order to calculate the distribution of elapsed time for a collection of such 
steps, it is simply a matter of performing a series of convolutions of many functions of 
the form of (3.1) with the values of r being determined by the specific trajectoty of the 
walker. The resulting convolution from all steps up to the nth contact gives the function 
PL(t). Averaging over all such walks, I determine Pn(t). 

I now turn to the results of a study of three different geometric models for porous 
materials. For each model, I discuss the observed Pn(t)  and, where possible, consider the 
NMR decay that each pore geometry would produce. The first model pore space is the 
interior of a circle. The trivial nature of this geometry allows for comparison with exact 
results~and illustrates the basic behaviour for an isolated pore. 

The second model is a set of identical circular pores connected to one another with 
narrow channels. This relatively minor change from an isolated pore results in drastic 
changes in Pn(t). Additionally, since the behaviour of random walks is well understood 
for both the circular pore and in the narrow channel separately [19],  this model should lend 
itself to analytic calculation. 

The third model for a porous material is a percolation cluster. Percolation is an important 
problem in condensed matter physics 12.51, and the functions P,(t) may provide a fruitful 
tool for understanding its structure. As a model for porous media, it also captures the 
flavour of the random grain structure of many real porous samples, and there have been 
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experimental measurements of porous materials that have shown percolation-like behaviour 
U61. 

These models are not intended to serve as exact representations of the microstructure for 
a physical porous medium. The actual geometry of a real porous material is very sample 
specific. There is a bewildering variety of influences which contribute to the formation 
of real rocks, and each of these factors affects the microscopic details of the pore surface 
[18]. It is not my goal to create a perfectly accurate physical description for one specific 
sample and then measure the function P,(t) for it. The purpose of this numerical study is 
to illustrate the geometrical features that affect the function Pn(t). and more importantly, 
the relaxation curve m(r).  

In the analysis of the functions P&), I will show two different types of results for each 
curve. The first is derived from the moments of each distribution. For each model pore 
space I plot as a function of n, the average elapsed time, (t),,  the standard deviation for 
the distribution, ( u ) ~ ,  and the skewness of the distribution, ( v ) ~ .  The skewness involves 
the third moment of the distribution and reflects the symmeny of the distribution about 
the average. A positive skewness indicates that the tail of the distribution is much broader 
above the mean than below. The opposite is hue for a negative skewness. 

I also show for each pore the actual functions Pn(t). For large n, these curves take on 
the scaling form 

where F ( x )  is some function characteristic of each model. In order to display the behaviour 
of F ( x ) ,  it is convenient to plot I o g ( ( ~ ) ~ P ~ ( t ) )  versus (r - (r),J/(u)-. For the circle and 
percolation, I am able to make quantitative statements about the function F ( x ) ,  as well as 
to calculate its implications for the long-time behaviour of the magnetization decay. 

All of the data shown below are averages over IOOOO random walkers. For calculating 
the moments, I followed these walks up to nm = 10000 bounces. In measuring the full 
functions Pn(r) ,  I only calculated up to n- = 1OOO. The results are reported assuming 
U = 1 and 5 = 1. 

3.1. The circle 

The simplest possible model for a pore space is the interior of a circle. This problem was 
taken up by Brownstein and Tan, and the behaviour of the magnetization is well understood. 
This makes it an ideal testing ground for the exploration of the relationship between the 
functions Pn (f) and the magnetization decay. 

Numerical simulations were performed on circles of various sizes; here I present the 
results for a circle with a radius R = IOU. The behaviour of the average time, the standard 
deviation and the skewness are shown in figures 1 and 2. .All three of these quantities have 
been plotted on a logarithmic scale to show their power-law behaviour. 

For large n, the average time (t). SS Rn. It is possible to show [20] that for a random 
walk starting a distance b from the surface of a circle, the average time, r, at which that 
walker encounters the circle is 

7 = bR(1- b / 2 R )  (3.3) 

where I have used the fact that in my simulations the walker's diffusion constant D' = $. 
Before the first contact with the circle, the random walkers begin with a uniform distibution 
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loq,,,inI 

Figure 1. Average and standard deviation of Pn(f)  for the random walks inside a circle. The 
broken w e  is the exact result for a continuum random walk 

0.5 I I 1 

-1.51 I I I 
0~ 1 2 3 4 

loglo(n1 

Figure 2. Skewness of P,, ( r )  for the circle. The curve seems to indicate a power-law-like decay. 
The high level of noise for large n is a result of the sensitiviy of higher moments to outliers. 

inside the circle. Thus, to determine ( t ) ~ ,  I integrate over all possible starting radii. I find 
that 

( t ) ~  = R2/4. (3.4) 

After the first bounce, the walkers always s m  a distance b' e 0.75 from the edge of the 
circle (the reason that b' c 1 is discussed in the appendix). Thus, I~ have 

(t)" = R2/4+nRb'(l - b'/2R).  (3.5) 
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Figure 3. P A )  for circle for n = 316,398,501,630,794,1000. The data have been collapsed 
to show the form of F(x) .  

The curve (3.5) is also plotted in figure 1. Note that the theoretical curve is displaced below 
the numerical result. This shift exists because (3.5) is for a continuous random walk, and 
diffusion on the smallest scales happens faster for continuous walks than for discrete walks. 
The two CUN- can be brought together by choosing the unit of time for the continuous 
random walk to be 1.8 r .  

Figure 1 shows that at large n the standard deviation increases as n'j2. This can be 
understood by considering the central limit theorem, which states that if I choose n times at 
random from a fixed distribution, then asymptotically the distribution that describes my total 
after n draws will be a Gaussian [27]. This distribution will have a mean that goes linearly 
in n and a standard deviation that increases as nilz. After the first bounce, this applies 
exactly to this random-walk problem. There is some function that describes the distribution 
of elapsed times between successive contacts with the circle. Each time a random walk 
moves from bounce n to n + 1, it is taking a sample from that distribution function. Thus, 
the central-limit theorem should apply to P,(t) in the limit of large n. 

Also, notice that the skewness seems to show a power-law decay to zero. This implies 
that the distribution is becoming more symmetric as n increases, as it should if this function 
is becoming a Gaussian. 

The actual functions Pn(t) are shown in figure 3. The data have been collapsed as 
described above to show the form of F ( x )  for the circle. I assume the form F ( x )  x 
A 4- BJxl' near x = 0. The difficulty in determining (L from the data arises because of the 
inherent noise which masks the behaviour near x = 0, and because the usable data extends 
only to x = 3. To find the power law, I subtract the value at the maximum from F(x) ,  
and then plot the resulting function on a log-log scale. The results for x 4 0 are shown 
in figure 4. From the central-limit theorem argument, I expect that (L = 2, and the curves 
show good agreement with this in the large-n limit. 

Finally, consider the long-time behaviour of the magnetization implied by the Gaussian 
form for Pn(r).  For long times, it will be the large-n terms that contribute and I have from 
(2.7) 
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loq,,(-xi 

Figure 4. Power-law behaviour for F ( x )  for x~ 
lines show the behaviour for F(+) = A  + Bx'. 

0. The value of A = -0.90. The broken 

(3.6) 

where q" = -log( 1 - q )  > 0, with A' and C constants. Ignoring logarithmic corrections, 
and converting the sum into an integral, I can evaluate (3.6) by the method of steepest 
descent. I then find that for large times, 

m(t)  = MAexp(-t/T) (3.7) 

where MA and T are constants. This is exactly the form for the long-time decay of the 
magnetization in a circular geomefq [I]. Thus, this Gaussian form for P,(t) leads to simple 
exponential decay. 

3.2. Connected circles 

The next level of difficulty is the case of connected pores. I choose to study a system of 
identical circular pores connected by long nmow channels. Physically, this might model a 
sample in which the voids in a rock are connected by long cracks. I have simulated this 
by considering a single pore of radius R connected to two channels on opposite sides, as 
shown in figure 5. I then impose periodic boundary conditions, and this becomes an infinite 
system of pores. The three important length scales are the radius R of the pore, the length L 
of the channel, and the width W of the channel. The results shown below are for R = 20a, 
L = 40a, and W = 5a. 

The results for the average, standard deviation and skewness are shown in figures 6 and 
7. Also shown are the results for a single circular pore with the same value for R. The ( t ) .  
becomes linear for large n,  but the curve is lower than for a single pore. Thus, the channel 
decreased the effective radius of the pore. 

The ( q ) ,  is plotted versus log@) in figure 7. This curve indicates that the asymptotic 
state for the distribution is asymmetric, with a broad tail at short times. The region 
10 < n < 150 suggests that the curve has a regime in which (q)* = KO + KI log@). 
Doing a least-square fit, I find KO = 3.0 and K, = -0.6. 
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Flgure 5. Circular pores with wnnecting m o w  channels. The pores are of radius R and the 
channels have a length L and a width W. 

I '  I I I I 

Figure 6. Average and srandard deviation of Pn(t) for the circular pores with w~ecling 
channels. The broken curves are the results for an isolated circular pore with the Same value of 
R. 

The goss behaviour of the random walkers is evident in Pn(t). In figure 8, I show the 
short-time behaviour of these functions. The broad peak is associated with walkers which 
start in the large pore. The peak at short times is due to the random walks that initially 
find themselves in the narrow channel. It will take walks which remain in this channel little 
time to accumulate n bounces. It is also evident that at some n - 500 this peak can no 
longer be distinguished from the tail of the distribution caused by walks that have visited 
the pore. This indicates that almost all of the walks that started in the channel have visited 
the pore at least once and have had their individual probability distribution smeared out by 
the long trajectories available in the large pore. 

When would this behaviour of a strong peak which dies out slowly be manifested in 
a general pore structure? An initial strong peak at a small time is characteristic of any 
structure which has one dimension that is small. The fact that it takes several hundred 
bounces for this peak to disappear is due to the long dimension of the channel. Had these 
random walks started in a small circle which had relatively easy access to a neighbouring 
large pore, this peak would have died out at much smaller values of n. Thus, long-lived, 
short-time peaks should be characteristic of either small pores that are very isolated from 
their surroundings, or from structures that have very large length-to-width ratios. 
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Figure 7. Skewness of Pn (I) for circular pores with connecting channels. The value for large n 
is negative. indicating a broader tail for shorter times. This c w e  also appears 10 have a linear 
regime from 10 < n < 150. 

0.0008 I I I ’  

f 

Figure 8. f n ( t )  for shoR times. The curves shown are for n = 63, 100, 158, 251, 316, 398, 
501,630.794. The small peak at shoR times is indistinguishable f” therail of the broad peak 
after n = 501. 

Figure 9 shows the collapsed form of the Pa@).  There is a a clear asymmetry in the 
distribution. It may seem surprising that F ( x )  does not possess the simple parabolic form 
for its asymptotic state. Unfortunately, the cenhd-limit theorem does not apply to this 
geometry. The difference between this case and the circle is that here the random walk 
is not always sampling from the same distribution. Walkers in the channel have a very 
different distribution for the elapsed time between bounces than do walkers in the l e e  
pore. 
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(P-(t)/J/@)" 

Figure 9. P,,(r) for circular pores with channels n = 316.398,501,630.194. IOW. The data 
has been collapsed to show the behaviour of F(x) .  The c w e s  are highly asymmehic. and the 
small peak is moving to the left for larger n. 

3 3 .  Percolation 

The final model that I wish to consider is the pore geometry of continuum percolation 
[28]. The model is generated by placing circles at random in a square with periodic 
boundary conditions. Figure IO shows the specific realization of the circles used in the 
results shown below. The square has an edge of length L = 100a, and each circle has a 
radius R = 3a. The pore volume is the entire region not covered by the circles. There is a 
well-connected region which extends from one end of the square to the other, and thus the 
region complementary to the circles has a 'percolating cluster', and the pore space is above 
the percolation threshold. 

The results for the average, standard deviation and skewness are shown in figures 1 1  
and 12. In the large-n limit, (t). seems to be slowly approaching a linear behaviour, and 
gives an effective radius of the pores of R = loa. In the region 100 < n c 1Oo00, a 
least-square fit indicates that ( I ) ,  - Rn0,97. 

The ( u ) ~  also displays a region of anomalous power-law behaviour. If I write (o),, - nB,  
then I find that for percolation, ,!I = 0.71 f 0.02. The implications of this power-law 
behaviour will be discussed below. The (q),, is plotted versus log(n). Fitting the linear 
region 150 < n < 7000 to the form ( v ) ~  = Ko+K, log@), I find KO 2.7 and K I  % -0.5. 
Note also that all of these moments seem to display a clear cut-off in the scaling behaviour 
at n 7000. 

In figure 13, I show the fonn of P,(t) for this model. I have collapsed the data to 
attempt to determine the function F(x) .  There are two behaviours which are of interest 
The first is the cross-over at very small values of x .  It may be that this curve becomes 
constant for large negative x. 

Also unusual is that in the broad peak there seems to be different behaviour above and 
below x = 0. I assume that near n = 0, I have F ( x )  w A f BIxIa*, where the plus and 
minus indicate different values for positive and negative values of x .  Figure 14 shows the 
results from subtracting the value of A ,  and plotting the resulting curves on a log-log scale 
for x < 0. For small negative x ,  I find that a- % 1.6. A similar plot for x > 0 shows 
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Figure 10. Continuum permlation model for porous malerial. There are 150 circles of radius 3 
~n a 100 x 100 square. The random walks move in the region exterior to the circles. 

Figure 11. Average and smdard deviation of P.(r) in the percolation model. The broken curve 
has the same slope as the power-law behaviour in (ch. 

that U+ % 2.3. For x > 0, it was not clear that an asymptotic state had been reached; and 
the true exponent e+ may be lower than reported here. Fortunately, the behaviour of the 
magnetization is q u h  insensitive to the behaviour ahove x = 0. 

These power-law behaviours have interesting consequences for the magnetization decay, 
m(t). Consider the time derivative of the magnetization, assuming the power-law form for 
F ( x ) ,  
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Figure 12. Skewness of P. ( t )  for the percolation model. The negative value for large n indicates 
a broad tail for small 1. The curve also seem to display a linear behaviour for 150 < n < 7WO. 

( f - ttl” I /(U)” 

Figure 13. P.0)  for the percolation model for n = 316.398.501,630,194,1WO. The data 
has been collapsed to show F(x). The data suggests thai F(x)  may become constant for large 
negative x .  

where I have assumed that ( t ) .  = Rn6, and the constants are defined as in (3.6). I again 
tum this sum into an integral and evaluate it by steepest descent. In the long-time limit, I 
obtain a magnetization of the form 

where MA and T are constants, and I have ignored logarithmic corrections. The value of 
the exponent is given by 

m(t) = MAexp(-(t/T)$) (3.9) 

(3.10) 
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loQ,o(-x) 

Figure 14. Power-law tehaviom of F ( x )  for x < 0 in percolaton model. The value used for 
A = -0.85. The bmken line shows the behaviour for F(x) = A + BIxI ' .~ .  Again the data 
suggesfs that F ( x )  becomes constant for large negative x .  

For the case of percolation, this gives @ w 0.75. 
The long-time limit is, however, a serious restriction on the experimental observability 

of such behaviour. To be Observed, there must be sufficient magnetization remaining in the 
pore volume. At n = I/q". 63% o f  the initial walkers would have been terminated. In 
the calculation that gives (3.10). the long-time limit means that this stretched exponential 
behaviour will be seen only f o r t  z t* ,  where t* - ( l / q")X .  The exponent ,y is given by 

R 
(3.11) 

The natural observability condition is that ,y Q 1. For percolation, ,y 
There is also a long-time cut-off time when this stretched exponential will no longer be 

observed. This occurs when either the maximum of the exponent in (3.8) moves outside 
the power-law regime of the function F(x) ,  or when the anomalous power-law behaviour 
disappears. 

Finally, it is worth emphasizing the relationship between the numerical results from 
the random-walk simulation and the determination of the magnetization decay. The 
computational study yields information about the form of the functions Pn(t). This form 
was then used in the series (3.8), and that series was then evaluate,d analytically. This 
analysis lead to a the prediction for the magnetization of the form given by (3.9) and 
(3.10). This illustrates the approach that must be taken for each specific geometry-first 
determine the behaviour of P,&) and then evaluate analytically the series (2.7) to determine 
the magnetization decay. This approach is, in spirit, very similar to a method by which the 
double-layer impedance for fractals was determined by using random-walk methods [321. 

1.6. 

4. Discussion 

In this work, I have described a new formalism with which to consider the problem of 
magnetic relaxation in porous media This formalism suggests a natural numerical scheme 
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to measure the behaviour of model systems, and I have discussed ways to make this methcd 
a practical computational tool. Finally, I applied this numerical method to three systems 
and discussed the resulting behaviours. 

By far the most exciting implication for real systems is the observed mechanism for 
a stretched exponential relaxation, a behaviour that is common in measurements of the 
magnetization in real rocks [17,8]. Equation (3.10) and the analysis that leads to it, does 
not depend on the percolation geometry, only on the existence of the power-law behaviour 
of Pn( f ) .  This suggests that the stretched exponential behaviour is more than an interesting 
way to plot experimental data, but reflects the fundamental behaviour of the magnetization 
decay. The next step is to understand under what circumstances the required power-law 
behaviour will be observed in P&). 

This method is, of course, still a long way from being a useful technique for 
characterizing a porous material. The success of this work comes from recasting the 
calculation of m(f)  into the problem of calculating Pn( f ) ,  this latter quantity being much 
more amenable to analytical and numerical study. 

The general method of calculating the time behaviour for a variable-step-size random 
walk may have interesting applications to other NMR methods used to study porous media. 
In recent work on pulsed field gradient methods [7], an important parameter is an efFective 
diffusion coefficient for the system. For a particular pore geometry, this coefficient is 
proportional to the mean-square displacement of the walker at time r. The numerical 
method presented here should easily generalize to calculate the distance from the walker's 
initial position as well as the elapsed time for the walk. 

Acknowledgments 

I would like to thank T C Halsey for his suggestion to study this problem, his help with the 
manuscript and fruitful discussion throughout this project. I would also like to acknowledge 
R A Goldstein for his original insights and his notes regarding some of the material on 
random walks. Finally, I would like to acknowledge useful discussion with B Duplantier, 
R Blumenfeld, P Mitra, W Halperin, K McCall, L Schwartz and P Le Doussal. Financial 
support for this work was provided by the Materials Research Laboratory. 

This work is presented as a thesis to the Department of Physics, The University of 
Chicago, in partial fulfillment of the requirements for the PhD degree. 

Appendix. Calculating Pa@): Details of the Implementation 

In this appendix, I present further information about the numerical algorithm that I described 
briefly in section 3. In writing an actual program which performs the random walk and 
calculates the functions P,(t), there are many important details which are not described 
here. I discuss only those pieces of information which serve to clarify what is actually 
being calculated in section 3, and which may help readers who wish to use some of these 
ideas in their computational studies. 

There are two distinct computational processes involved. The first is performing a large 
number of off-lattice random walks with variablestep-size. The second is transforming the 
step size information from.these walks into the functions P,(f) .  I begin with a discussion 
of the random-walk simulation. Recall from above that my calculations are for a two- 
dimensional off-lattice random walk, and for this I choose a minimum step of length 1 
which takes a time 1. Such an algorithm has a diffusion constant D' = 4. The pore surface 
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is represented by a discrete set of points, with the distance between neiqboring points 
always less than 1 .  The simulation then treats these points as the centres for a set of circles 
with unit radius. 

When a walker smkes the surface of one of these small circles, the walk is reflected. 
The simplest way to simulate this reflection is to retum the walker to its position before 
the step was taken. Even though the step is taken back, the total elapsed time for the walk 
is still incremented by one-the random walk behaves like a 'myopic' ant [26]. Because 
the step is taken back, the walker will not always end up a fixed distance away from the 
surface. This distance will always be less than one, depending on how far the walk is from 
the surface at the start of its step. With sufficiently large number of walks, the variation 
in this step-back distance becomes unimportant and the overall behaviour is described by 
some effective step length. 

The rest of the variable step size random-walk algorithm follows conventional methods 
[22], and I now turn to the numerical processing involved with calculating the functions 
P,,(t). From (3.1). it is straightforward to calculate numerically the functions p&) for all 
the different step sizes that the random walk may take. Consider s steps of length r taken 
between successive contacts of the walk with the pore surface. The contribution of these 
steps to P i ( t )  will be from s convotutions of p r ( t )  with itself, which I Write as p:(t). These 
self-convolution integrals need only be done once, and then stored for later use. To actually 
perform these convolution integrals, it is best to do them using a fast fourier transform (IT$ 
method [24]. 

The program which actually calculates P,'(t) then performs convolutions of these various 
functions p ; ( f ) .  The choice of which functions to convolve is the information provided by 
the random-walk simulation. Each p : ( t )  is successively convolved with the function which 
is the probability distribution resulting from all.of the previous steps in the walk. After all 
the steps up to a given contact have been process, the computer has generated Pi([)  for 
 that walker. 

In order to avoid performing m s  on excessively long functions, I use the hierarchical 
data stmcture shown in figure AI. Each array has a maximum length of LO. At the bottom 
of the hierarchy. each element of the may  represents a length of time 1. Going up each 
level in the hierarchy, the amount of time'falling into each array element increases by a 
factor of To. As each new function p;( t )  contributes, it is convolved with the function 
occupying the bottom level of the hierarchy. As a result of these convolutions the function 
in the lowest level increases in size. Eventually it becomes impossible for the next &(t) to 
be convolved into the lowest array. When this happens, the function that is in the bottom 
m a y  is compressed in time by the factor To, and is then convolved with the array which 
is above it in the hierarchy. Once this old function is convolved into the array above, 
the new p;(t )  is placed into the bottom array, and the process is started again. With this 
procedure, eventually the function in the second level of the hierarchy will grow beyond a 
length LO. This second array is then compressed by a factor To, and convolved with the 
function above it. This can be done ad infinitum, creating new levels as the total time of 
the walk is increased. With this hierarchical scheme, m are performed on arrays which 
are never longer than Lo. 

To determine the PL(t) for a specific n, the function in each level must be compressed 
and convolved with the function directly above it, beginning with the bottom of the hierarchy 
and continuing to the top. At the end of this procedure, the function which occupies the 
top of the hierarchy is Pi@) .  This function is then averaged with the other values of 
which were measured from different random walks. Once this average over all walks is 
performed, I have P,( t ) .  

, 

~ ~ 
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3 T; ... 
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F C r e  AI. Hierarchical data sh’ucture for calculating PR(t). Each array has Lo elements. At 
the bonom of the hierarchy. the time scale for each amy element is 1. The time scale associated 
with an element of the array increases by a factor of To at each level of the hierarchy. Whenever 
a function gets too long to be contained in its current level, the function is c ” a d  by a factor 
of To and convolved into the array above i t  

With this scheme for calculating PJt) it required roughly 20 times more CPU time to 
process all of the convolutions than to perform the random walks. This suggest that doing 
simulations to measure P,(t) for three-dimensional models should not take much more real 
time than was required for two dimensions. Working in three dimensions will slow down 
the random-walk p“ of this procedure, but the convolutions are what determine the overall 
processing time. 

Finally, I would like to mention that it is possible to calculate exactly the moments of 
the functions p r ( t )  in closed form. Thus, when calculating the moments of P,(t) it is not 
necessary to do any convolution at all. It is for this reason that the results for the moments 
are shown up to a much larger value of n. 
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